
Kryptographische Protokolle
The Decision Diffie-Hellman Problem

Matteo Harutunian
harutuni@in.tum.de

Technische Universität München

June 23, 2011

1 Introduction

The Diffie-Hellman key agreement protocol, is a procedure that allows establishing a shared

secret over an insecure connection and was developed by Whitfield Diffie and Martin Hellman in

1976, . This procedure is, often slightly modified, still used today by several applications. Before

going into more detail on these applications, let’s have a look at the basic key-exchange method

between two users Alice and Bob, where Alice is the one initiating the exchange:

Figure 1: Diffie-Hellman key agreement protocol1

First of all, Alice chooses the public parameters G and g and her secret parameter a. The

limitations to her choices will be discussed in detail in section 3. She sends the triplet (G, g, ga)

to Bob. Upon receiving this triplet, Bob chooses his secret parameter b and sends gb to Alice.

Now Alice achieves the shared secret key by computing (gb)a = gab, whereas Bob achieves it by

1Icons in the figure are from http://www.iconarchive.com/show/soft-icons-by-kyo-tux.html.

1

computing (ga)b = gab. As a result, Alice and Bob share the secret gab, while assuming that gab

can’t be efficiently computed by the parameters (G, g, ga, gb). This shared secret can be hashed

to a symmetric key by applying a key derivation function, e.g. SHA1(gab).

To exemplify this protocol and the values used in it, consider the following example2:

Alice Bob

Choose G = Z∗11, g = 2 and a = 3.

Compute ga = 23 = 8 mod 11 = 8.

Send G, g, ga to Bob.

Choose b = 9.

Compute gb = 29 = 512 mod 11 = 6.

Send gb to Alice.

Compute (gb)a = 63 = 216 mod 11 = 7. Compute (ga)b = 89 = 134, 217, 728 mod 11 = 7

Shared secret key: gab = 7 Shared secret key: gab = 7

Extended or modified versions of this basic protocol are used, for example, by the following

applications (see [2],[3] and [4]):

• VPN uses the Diffie-Hellman key agreement protocol to generate a shared secret key,

which is afterwards hashed to a 56 or 168-bit key to make it usable with DES or 3DES

respectively.

• In SSL, various Diffie-Hellman methods are supported, for example by providing public

key parameters (G, g, ga) in a server certificate. The client simply has to inform the server

about his public key parameter (gb), either via a certificate or a key exchange message, in

order to fix a secret key between the two peers.

• The new German electronic identity card makes use of the Diffie-Hellman method as

well: Running an authenticated version of the protocol between the electronic ID and a

service provider, a shared secret can be exchanged. Using this secret allows generation of

cryptographic keys to securely transfer personal data.

Each of these applications relies on the assumption, that the Diffie-Hellman key agreement

protocol is safe. However, safety in terms of the protocol is not clearly defined. In the following,

we are going to examine a few assumptions regarding the safety and analyze them.

2 The Diffie-Hellman Protocol

Before we can proceed to the actual analysis of the Diffie-Hellman protocol and the assumptions

made to it, some mathematical structures have to be introduced.

2.1 Algebraic Basics - Cyclic Groups

In the previous section, we already came across the parameters G and g, as well as a, b and the

computed ga and gb. All these are parameters of cyclic groups, the main algebraic structure used

2If you are unfamiliar with the used notation, read section 2.1 first.

2

by the Diffie-Hellman key exchange. The best known cyclic group is Z+ := (Z,+), that is the

set of all integers with addition as group operation. It’s called a cyclic group, because there is

one element (1 or -1), called generator, that can generate all other elements of the whole group,

by applying the group operation to itself:

{1i|i ∈ Z} = {(−1)i|i ∈ Z} = Z where gn =

n times︷ ︸︸ ︷
g•g• . . . •g for any operation •.

Other examples of cyclic groups are Z+
n := (Zn,+n) for n ∈ N, where +n is the addition modulo

n, e.g. 4 +5 4 = (4 + 4) mod 5 = 8 mod 5 = 3. Z+
n are called finite additive groups, while

Z+ is called infinite additive group. It is noteworthy that any finite cyclic group, no matter the

set and operation, is isomorphic to some finite additive group, and any infinite cyclic group is

isomorphic to Z+, meaning that they can be represented in some way by either one of these.

Another common cyclic group is the multiplicative group, denoted by Z∗n with multiplication

modulo n as its group operation, e.g. 4 ·5 4 = (4 · 4) mod 5 = 16 mod 5 = 1.

2.2 Refinements on the protocol

Being aware of cyclic groups now, we can have a deeper look at the actual key exchange protocol

(Fig. 1). The parameter G Alice sends to Bob in the first step has to be a cyclic group, while

g ∈ G is a generator for that group. She chooses a ∈ [1, |G|] and computes her public key by

applying g a-times to itself: ga. Bob (and any eavesdropper Eve) receives the parameters G, g

and ga, yet a remains unknown. By choosing a random b ∈ [1, |G|], Bob can compute gb and

along with it (ga)b = gab, achieving the shared secret key. Bob only sends gb to Alice, with which

she can compute the shared secret key by (gb)a = gab.

Being clear about the protocol, some problems are rising:

1. How do Alice and Bob know, they are communicating with each other, and not with Eve?

As the procedure doesn’t include authentication, it’s possible to perform a man-in-the-middle

attack to extract information. This problem lies in the protocol itself and has to be taken care

of when making use of it. When assuring that Alice and Bob can authenticate each other, this

attack is no longer possible.

2. Assuming that authentication is not an issue, how can Alice and Bob be sure, that their

secret gab is safe, when Eve knows g, ga and gb. Obviously group and generator have to be

chosen properly, in order to grant security. Yet, what assumptions do these groups have to

fulfill?

3 The Computational Diffie-Hellman assumption

Loosely speaking, the computational Diffie-Hellman assumption (CDH) states, that no efficient

algorithm can compute gab from g, ga and gb in a certain group family G3. A more mathematical

definition is, that G satisfies the (CDH) assumption, if there exists no CDH algorithm A for G,

such that for some α > 0 and sufficiently large n (see [1]):

Pr[A(G, g, ga, gb) = gab] >
1

nα

3A group family is a set of groups, that satisfies some constraint, e.g. all Z∗
p, such that p is prime.

3

At first this might look like a sound assumption, meaning that it might be sufficient to ensure

that this assumption holds for some group family G, to grant security when choosing some group

G ∈ G to use with the Diffie-Hellman protocol.

This is not the case, for example, when using the Diffie-Hellman protocol for the ElGamal

encryption system. Alice makes the parameters (G, g, ga) publicly available, so that encrypting

a message m only requires choosing a random b, computing gb and sending (gb,m · gab) to Alice.

Alice decrypts by computing gab, using her private key a, and then dividing to obtain the original

message m.

When choosing G := Z∗p for a prime p, the CDH assumption is believed to be true, yet the

system leaks information: The Legendre symbol4 of ga and gb can be easily computed. Thus,

the Legendre symbol of gab is known to any attacker, and along with it the Legendre symbol of

message m. Obviously, the CDH assumption alone is not sufficient to ensure security. Therefore

a stronger assumption is needed to ensure the semantic security5 of this system.

4 The Decision Diffie-Hellman assumption

4.1 Definition

The Decision Diffie-Hellman assumption (DDH) can be described as the assumption, that, given

g, ga, gb ∈ G, one cannot efficiently decide whether gc = gab with a, b, c ∈ [1, |G|]. Again, this

can be transformed into a more mathematical definition: A group family G satisfies the DDH

assumption, if there is no DDH algorithm A for G, such that for some α > 0 and sufficiently

large n (see [1]):

∣∣Pr[A(G, g, ga, gb, gab) = true]− Pr[A(G, g, ga, gb, gc) = true]
∣∣ > 1

nα

This assumption is stronger than CDH (if one could compute gab efficiently, one could trivially

decide whether gc = gab or not) and improves the security of several encryption systems, including

ElGamal:

For a group G that satisfies the DDH assumption and a generator g, the system is secure under

DDH, if the message space is restricted to G. This is due to the fact, that given ga, gb, the secret

gab and along with it m · gab can’t be distinguished from a random group element. Then no

additional information about the ciphertext can be deduced from the plaintext.

4.2 Group families satisfying the DDH assumption

As we’ve seen before, groups have to be chosen carefully, to ensure the DDH assumption is

satisfied. The following list contains a few examples of group families, for which the DDH

4The Legendre symbol of a (in Z∗
p) is defined as

(
a
p

)
:=

0 if p|a
1 if a is a quadratic residue modulo p
−1 if a is a quadratic nonresidue modulo p.

5By the definition of IND-CPA security, encryptions of different messages have to be indistinguishable.

4

assumption is believed to be true, as the best known algorithm for all of them is full discrete log,

which has exponential running time (see [1]).

1. The subgroupQp of quadratic residues in Z∗p for some primes p and p1, such that p = 2p1+1

2. The subgroup Qp,q of Z∗p of order q, such that p = aq + 1 is prime and q > 10
√
p

3. The cyclic subgroup T of order (p− 1)(q − 1) where p, q, p−12 , q−12 are prime (note that T

does not have prime order)

4. Any elliptic curve Ea,b/Fp, such that p and |Ea,b| are prime

5 Known results of DDH

5.1 Randomized Reduction

Regarding the security of DDH, it might be insightful to find an assumption that implies DDH.

While it is still unknown whether CDH or any classic problem like factoring implies DDH, one

can show that it is in fact implied by perfect-DDH, which is a slightly weaker assumption:

For some α > 0 and sufficiently large n, a perfect-DDH algorithm A is a polynomial time

algorithm, that satisfies (see [1]):

Pr[A(G, g, ga, gb, gc) = “true” | c = ab] > 1− 1

nα

Pr[A(G, g, ga, gb, gc) = “true” | c 6= ab] <
1

nα

Any group family G satisfies the perfect-DDH assumption, if there is no perfect-DDH algorithm

for G. We are going to show, that DDH and perfect-DDH are equivalent.

Obviously the DDH assumption implies perfect-DDH, so only the converse has to be proven.

Let O be a DDH-algorithm (often called oracle), then it is left to show that there is a perfect-

DDH algorithm A that makes use of O. This algorithm has to determine with overwhelming

probability, whether (x, y, z) is a valid DH-triplet, for some x, y, z ∈ G, for some group G with

generator g. By picking random u, v, w ∈ [1, |G|], we construct the triplet

(x′, y′, z′) = (xwgu, ygv, zwyuxwvguv)

It is easy to show that, no matter if (x, y, z) is valid or not, the triplet (x′, y′, z′) is indistinguish-

able from uniform. Moreover, (x′, y′, z′) is always a valid DH-triplet, if (x, y, z) is valid. Thus,

depending on (x, y, z), (x′, y′, z′) is either a uniformly random valid triplet or a completely ran-

dom triplet. The perfect-DDH algorithm A performs two main steps and a final step to output

the result:

1. Generate k triplets (x′, y′, z′) and query O. Save the number of times the oracle answers true

in t1
2. Generate k random triplets in G3 and query O. Save the number of times the oracle answers

true in t2
3. If |t1 − t2| > εk/2 output true6

6Here ε ≥ 1
nα is the advantage of O.

5

else output false

One can show that, if if k is chosen, such that k > 1
ε log2 1

δ , A outputs the right answer with

probability at least 1− δ.

5.2 Generic algorithms

Another important point when analyzing the security of DDH is the existence of generic algo-

rithms. A generic DDH algorithm is an algorithm A, that works for all groups. If there was

such an algorithm, the DDH assumption would be useless. Luckily, one can prove that the best

possible generic algorithm for DDH is the best generic discrete log algorithm (Baby-Step-Giant-

Step), whose runtime is Oε(
√
p) for a group of prime order g (see [1]).

First, let us precisely define generic algorithms7: A generic algorithm A for Z+
p takes as input

an encoding list (σ(x1), . . . , σ(xk)), where σ is an encoding function and xi ∈ Z+
p , and produces

an output A(σ;x1, ..., xk). The algorithm may query an oracle at any time (by giving it i, j and

a sign bit), which will return σ(xi ± xj), depending on the algorithms query.

We will show that for a prime p, S ⊂ {0, 1}∗, random a, b, c ∈ Z+
p , an encoding function σ and

a random bit s, any generic algorithm A for Z+
p∣∣∣∣Pr[A(σ; 1, a, b, ws, w1−s) = s]− 1

2

∣∣∣∣ < m2

p

where w0 = ab, w1 = c and m is the upper bound of oracle queries A can make.

A gains knowledge about the encoding σ(xi) of some xi ∈ Z+
p every time it queries the oracle.

Examining the oracle’s previous queries, it is possible to deduce a linear function Fi, such that

xi = Fi(a, b, c, ab). If ∀i 6= j, Fi 6= Fj : σ(xi) 6= σ(xj), then A has learned the random encoding

of distinct values. These values don’t provide any information to A, as they are independent

random bit strings. So we can assume that ∃i 6= j, Fi 6= Fj : σ(xi) = σ(xj), which might provide

information to A, it might learn a linear relation on a, b, c, ab. Assuming the worst case, that is

A can produce the correct output upon finding such values, it suffices to bound the probability

that there exist i, j such that i 6= j and Fi(a, b, c, ab) = Fj(a, b, c, ab). Let R be this event. For

G(x, y, z) = Fi−Fj , a polynomial of total degree 2, the probability of (x, y, z) ∈ Z3
p being a zero

of G is bounded by 2/p (see [1]). There are
(
m
2

)
pairs of Fi, Fj , thus the total probability of R

is bounded by

Pr[R] ≤
(
m

2

)
· 2

p
<
m2

p

The algorithm produces the correct output if either R occurs or A guesses the answers with

probability half.

6 Conclusion

We have seen that the Computational Diffie-Hellman assumption isn’t sufficient to ensure, that

a system does not leak information. By applying the far stronger Decision Diffie-Hellman as-

sumption, the security of such systems can be improved. The evidence from section 6.1 shows

7Remember that any cyclic group can be represented by the additive groups.

6

that the Diffie-Hellman problem cannot be decided in any non-negligible fraction of the input

space, if the problem cannot be decided with overwhelming probability. Section 6.2 proves the

non-existence of generic algorithms that can break DDH. Further analysis on the security of

DDH can be found, for example, in [1].

Literature

[1] D. Boneh, “The Decision Diffie-Hellman problem” (1998)

[2] Andrew Mason, “Cisco Secure Virtual Private Networks”, Cisco Press (2001), chapter 3

[3] William Stallings, “SSL: Foundation for Web security”,

http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_1-1/ssl.html (2007)

[4] M. Margraf, “Der elektronische Identitätsnachweis des zukünftigen Personalausweises” (2009)

7

